top of page
Lean-IQ Logo
AutorenbildRalf Pühler

What are actually the advantages in being a data-driven company?

Aktualisiert: 7. Aug.

By 2025, smart workflows and seamless interactions among humans and machines will likely be as standard as the corporate balance sheet, and most employees will use data to optimize nearly every aspect of their work. We know 2025 isn’t too far off, but that’s the point. Seven characteristics will define this new data-driven enterprise, and we’ve already seen many companies exhibit at least some of them, with many more beginning the journey to do so.

Those able to make the most progress fastest stand to capture the highest value from data-supported capabilities. Companies already seeing 20 percent of their earnings before interest and taxes (EBIT) contributed by artificial intelligence (AI), for example, are far more likely to engage in data practices that underpin these characteristics.

  • Data embedded in every decision, interaction, and process

  • Data is processed and delivered in real time

  • Flexible data stores enable integrated, ready-to-use data

  • Data operating model treats data like a product

  • The chief data officer’s role is expanded to generate value

  • Data-ecosystem memberships are the norm

  • Data management is prioritized and automated for privacy, security, and resiliency


This guide is intended to help executives understand the characteristics of the new data-driven enterprise and the capabilities they enable. It also provides resources to dive deeper on how to embed them in your organization.


#01 - Data embedded in every decision, interaction, and process

Today

Organizations often apply data-driven approaches—from predictive systems to AI-driven automation—sporadically throughout the organization, leaving value on the table and creating inefficiencies. Many business problems still get solved through traditional approaches and take months or years to resolve.


By 2025

Nearly all employees naturally and regularly leverage data to support their work. Rather than defaulting to solving problems by developing lengthy—sometimes multiyear—road maps, they’re empowered to ask how innovative data techniques could resolve challenges in hours, days or weeks. Organizations are capable of better decision making as well as automating basic day-to-day activities and regularly occurring decisions. Employees are free to focus on more “human” domains, such as innovation, collaboration, and communication. The data-driven culture fosters continuous performance improvement to create truly differentiated customer and employee experiences and enable the growth of sophisticated new applications that aren’t widely available today.


How to get started

Read “Winning with AI is a state of mind” for more about making the shift to an AI-enabled organization, and learn how to harness the power of data from AI leaders.

Begin upskilling your employees for data use and AI, if you haven’t started already. Analytics academies can help.

Learn how to reimagine each workflow, journey, and function to leverage data and AI in “Getting AI to scale.”

Articulate your vision for a data-driven organization.

#02 - Data is processed and delivered in real time

Today

Only a fraction of data from connected devices is ingested, processed, queried, and analyzed in real time due to the limits of legacy technology structures, the challenges of adopting more modern architectural elements, and the high computational demands of intensive, real-time processing jobs. Companies often must choose between speed and computational intensity, which can delay more sophisticated analyses and inhibit the implementation of real-time use cases.


By 2025

Vast networks of connected devices gather and transmit data and insights, often in real time. How data is generated, processed, analyzed, and visualized for end users is dramatically transformed by new and more ubiquitous technologies, such as kappa or lambda architectures for real-time analysis, leading to faster and more powerful insights. Even the most sophisticated advanced analytics are reasonably available to all organizations as the cost of cloud computing continues to decline and more powerful “in-memory” data tools come online (for example, Redis, Memcached). Altogether, this enables many more advanced use cases for delivering insights to customers, employees, and partners.


How to get started

Take advantage of a road-tested reference data architecture that enables the modularity, flexibility, and scalability needed to support these capabilities.

Evolve to a cloud-enabled data platform to meet future data and analytical needs, such as real-time capabilities.

Learn about the future of cellular-enabled computing devices.

#03 - Flexible data stores enable integrated, ready-to-use data

Today

Though the proliferation of data is driven by unstructured or semi-structured data, most usable data is still organized in a structured fashion using relational database tools. Data engineers often spend significant time manually exploring data sets, establishing relationships among them, and joining them together. They also frequently must refine data from its natural, unstructured state into a structured form using manual and bespoke processes that are time-consuming, not scalable, and error prone.


By 2025

Data practitioners increasingly leverage an array of database types—including time-series databases, graph databases, and NoSQL databases—enabling more flexible ways of organizing data. This allows teams to query and understand relationships between unstructured and semi-structured data easier and faster, which accelerates development of new AI-driven capabilities and the discovery of new relationships in the data to drive innovation. Combining these flexible data stores with advances in real-time technology and architecture also enables organizations to develop data products, such as ”customer 360” data platforms and digital twins—real-time-enabled data models of physical entities (such as a manufacturing facility, supply, or even the human body). This enables sophisticated simulations and what-if scenarios using traditional machine learning capabilities or more-advanced techniques such as reinforcement learning.


How to get started

​Implement culture and technology changes to modernize your data architecture.

Identify critical data sets (such as customer purchase frequency, customer attributes) that could later be organized into data assets (for example, a complete view of the customer) and develop a taxonomy for these data assets (for example, a business-data product such as “customer 360”).

Explore flexible ontologies and knowledge graphs to map the relationship between different classes of data and data points.

Upgrade existing digital simulators, replatforming them onto a cloud environment and updating APIs, to support more-sophisticated AI capabilities such as reinforcement learning.

#04 - Data operating model treats data like a product

Today An organization’s data function, if one exists outside of IT, manages data using top-down standards, rules, and controls. Data often has no true “owner” ensuring it’s updated and ready for use in various ways. Data sets are also stored—sometimes in duplication—across sprawling, siloed, and often costly environments, making it difficult for users within an organization (such as data scientists looking for data to build analytics models) to quickly find, access, and integrate the data they need.


By 2025 Data assets are organized and supported as products, regardless of whether they’re used by internal teams or external customers. These data products have dedicated teams, or “squads,” aligned against them to embed data security, evolve data engineering (for example, to transform data or continuously integrate new sources of data), and implement self-service access and analytics tools. Data products continuously evolve in an agile manner to meet the needs of consumers, leveraging DataOps (DevOps for data) and continuous integration and delivery processes and tools. Altogether, these products provide data solutions that can more easily and repeatedly be used to meet various business challenges and reduce the time and cost of delivering new AI-driven capabilities.


How to get started

​Embed AI teams in the business, and empower them to design, develop, deploy, and continually enhance new AI-driven products using these data products.

Employ a data-governance operating model that ensures data quality and treats data like a product.

#05 - The chief data officer’s role is expanded to generate value

Today Chief data officers (CDOs) and their teams function as a cost center responsible for developing and tracking compliance with policies, standards, and procedures to manage data and ensure its quality.


By 2025 CDOs and their teams function as a business unit with profit-and-loss responsibilities. The unit, in partnership with business teams, is responsible for ideating new ways to use data, developing a holistic enterprise data strategy (and embedding it as part of a business strategy), and incubating new sources of revenue by monetizing data services and data sharing.


How to get started

​For CDOs, begin conversations with business-unit leaders to identify opportunities for leveraging data to drive business value.

​Develop holistic priorities, underpinned by scorecards and metrics, that cover organizational health, talent, and culture, as well as data quality.

​Reinforce the ethical use of data to ensure that new revenue-generating data services align with corporate values and culture.

#06 - Data-ecosystem memberships are the norm

Today

Data is often siloed, even within organizations. While data-sharing arrangements with external partners and competitors are increasing, they’re still uncommon and often limited.


By 2025

Large, complex organizations use data-sharing platforms to facilitate collaboration on data-driven projects, both within and between organizations. Data-driven companies actively participate in a data economy that facilitates the pooling of data to create more valuable insights for all members. Data marketplaces enable the exchange, sharing, and supplementation of data, ultimately empowering companies to build truly unique and proprietary data products and gain insights from them. Altogether, barriers to the exchange and combining of data are greatly reduced, bringing together various data sources in such a way that the value generated is much greater than the sum of its parts.


How to get started

Read more about the different types of data ecosystems and best practices for a successful ecosystem. Here are some examples in financial services, retail, and healthcare.

Choose the data-ecosystem archetypes that will be most important for your organization.

Adopt data-sharing tools, protocols, and procedures.

#07 - Data management is prioritized and automated for privacy, security, and resiliency

Today

Data security and privacy are often viewed as compliance issues, driven by nascent regulatory data-protection mandates and consumers beginning to realize how much of their information is collected and used. Data-security and -privacy protections are often either insufficient or monolithic, rather than tailored to individual data sets. Providing employees with secure data access is a highly manual process, making it error prone and lengthy. Manual data-resiliency processes make it difficult to recover data quickly and fully, creating risks for lengthy data outages that impact employee productivity.


By 2025

Organizational mindsets have fully shifted toward treating data privacy, ethics, and security as areas of required competency, driven by evolving regulatory expectations such as the Virginia Consumer Data Protection Act (VCDPA), General Data Protection Regulation (GDPR), and California Consumer Privacy Act (CCPA); increasing consumer awareness of their data rights; and the increasingly high stakes of security incidents. Self-service provisioning portals manage and automate data provisioning using predefined “scripts” to safely and securely provide users with access to data in near real time, greatly improving user productivity. Automated, near-constant backup procedures ensure data resiliency; faster recovery procedures rapidly establish and recover the “last good copy” of data in minutes rather than days or weeks, thus minimizing risks when technological glitches occur. AI tools become available to more effectively manage data—for example, by automating the identification, correction, and remediation of data-quality issues. Altogether, these efforts enable organizations to build greater trust in both the data and how it’s managed, ultimately accelerating adoption of new data-driven services.


How to get started

Consider adopting a data-ethics framework to understand and evaluate potential ethical and regulatory ramifications of data and analytics activity, especially involving consumer data.

Consider leveraging cloud tools to store, manage, and secure priority data, and, for data already residing on the cloud, leverage automated backup and resiliency capabilities and tools as part of cybersecurity policies.

Create a road map for migrating to new automatic provisioning and resiliency capabilities as they evolve.

Adopt a frequent, iterative approach to developing, reviewing, and revising governance and control protocols to take advantage of forthcoming opportunities to automate database administration—for example, by setting up a self-service provisioning portal and mandating automated backup and restoration procedures on compatible data platforms.


6 Ansichten0 Kommentare

Aktuelle Beiträge

Alle ansehen

Kommentarer


bottom of page